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Abstract  

Some years ago it was shown that the nonlinear term of Heisenberg's spinor equation can 
be derived by torsion of the Minkowski space (Cartan space). This result is applied in the 
investigations of this paper. As the Heisenberg equation does not show any connection 
with recent phenomenological theories in high energy physics, like the patton or quark 
model, the problems of the metric of space-time are discussed from the aspect of funda- 
mental axioms of topology (Hausdorff space). It will be shown that Feynman's relativistic 
parton theory can be derived by means of a quantised de Sitter space, where the constant 
curvature can assume only discrete values. It is also possible to derive the Dkac equation 
from the same mathematical considerations. A nonlinear spinor equation will be formu- 
lated which contains the parton theory and the nonlinear term of the Heisenberg equation 
as different approaches in the theory of elementary particles. 

1. Introduction 

In the present  quan tum field theory  (QFT)  there are two  p r o f o u n d  prob- 
lems, which have led to the considerat ion o f  a smallest length l in theoret ica l  
physics: 

1. The  divergencies o f  the self- interaction terms for the calcula t ion o f  the  
rest mass o f  the e lementary  particles. Accord ing  to relat ivi ty theory  
there is an equivalence be tween  mat te r ,  energy and field. Therefore  the 
mass o f  a particle,  which is a measurable  magni tude ,  should be able to  
be calculated by means  o f  the self- interaction with  its own field. 

2. The  necessity o f  a discrete mass spec t rum for the descr ipt ion and 
character isat ion o f  e lementa ry  particles. 
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Heisenberg (1967) and other authors (Tamm, 1969 and Kirzhnits, 1971) have 
emphasised that the constants c (velocity of light) and h (Planck's constant) 
are not sufficient for the introduction of a unified field, where the discrete 
masses represent eigenvalues of this field, as it is impossible to form an 
expression with the dimension of a mass with these two constants. If the mass 
is not considered as a given magnitude, then the introduction of I must be 
taken into account. In recent times many discussions have been dedicated to 
the possible candidates for l. According to Heisenberg's reasoning I should be 
of the order 

l ~ h/Me ~ 10 -13 cm (1.1) 

where M is a baryon mass. Other values for I have also been proposed, for 
example, 

l ~ 87r(hG/e3) t/2 ~ 10 -32 cm (1.2) 

G is the Newtonian gravitational constant. (See report by Kirzhnits (1971).) In 
previous investigations (Ulmer) we have observed a connection between l, 
introduced for the quantisation of a De Sitter space and Feynman's relativistic 
patton theory, which represents a phenomenological extension of QFT, as for 
the description of the inner structure of elementary particles harmonic oscil- 
lators have been assumed. Although we have derived Feynman's parton theory 
(or quark theory, if we identify partons with quarks), we intend to regard the 
order of l as an open question, for this question can only be answered by 
experimental results. 

2. The Nonlinear Term o f  Heisenberg's Spinor Equation 
and the A f f ine Connection 

For the description of elementary particles Heisenberg et aL (1959) pro- 
posed the nonlinear spinor equation 

7vtI,,v + /27VT(~3 ,vT~)~  = 0 (2.1) 

In this paper ~,v means partial derivation. Some motivations for equation (2.1) 
were induced by the fundamental symmetries of the Lorentz and isospin 
group, resp. the/3-decay. In 1957 Lee and Yang supposed, and Wu observed, that 
neutrinos and antineutrinos violate the assumption of parity invariance. The trans- 
mutability of elementary particles requires a nonlinear spinor equation, and 
Heisenberg characterised this situation with: 'Each elementary particle is 
moving in the field of the other particles'. Some years ago it was shown by 
Rodichev (I961), Brannss (1964, 1965), and Schmutzer (1964) that the 
equation (2.1) is able to be interpreted by torsion of space. Rodichev (1961) 
and Schmutzer (1964) used the postulates: 

1. The components of the affine connection (in the Riemann-Cartan space) 
are not symmetrical, for they are defined by 

= + CXuv (2.2) 
# 
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Hereby {xv} are the well-known Christoffel symbols (,xv} = {~}. The CXv are 
the components of the completely antisymmetric tensor of 3rd rank, represent- 
ing the torsion of space (Cartan space). Equation (2.2) defines a Riemann- 
Cartan geometry. For the following we need the case, where CX~v 4:0 and {~xu} 
vanishes ({xv} = 0). 

2. The metrical invariant R is obtained by contraction R = g ' ~ R ~ ;  and, 
because {~v} - 0, R is given by 

R = CxUVCxuv (2.3) 

The field equation (2.1) is obtained by the variation principle 

6 f (L - bR) d4x = 0, b = const (2.4) 

The Lagrangian L must be defined by 

L = ½ [~ ' ) . , (~ . ,  T- ~,r' Car tan q1"L~j _ .~.(~, ~ :7;.~Cartana.t, ) . . . . .  7p tel (2.5) 

The components F C a f t a n  of the affine connection in the spinor formalism 
(that means covariant derivation of a Caftan space with (v~} = 0) are defined 
as follows 

FCartan = _~Cartan = ¼. ~ Cp~f)'aT/3 
a,~ 

Now we perform the variation of equation (2.3) with respect to Cx,  v, then we 
obtain (X 4 p 4 v + X) 

Cx,  v = (1/8b).  (CI~7x%Tv ~)  (2.6a) 

F Caftan = (1/32b). ( ~ 7 x V . 7 v ~ ) @ T  v (2.6b) 

This result for F C a r t a n  w e  shall use again later. Varying L with respect to 
leads to the Heisenberg equation 

7vqd.v +_ (1/32b)(~7~.7,Tv q2)@7"Tvqt = 0 (X ~: U ¢" v 4- X) 

= 7v~,v  + I27V7(U~TvT~)~ = O, 12 = 3b/16 

The nonlinear term of equation (2.1) appears as a consequence of a torsion of 
space, representing a universal spin-spin-contact interaction. The same result 
was obtained by Braunss (1964, 1965), without using the variation principle. 
This way of interpreting the nonlinear term of equation (2.1) makes new 
aspects apparent, for example, the relationship to the/~-decay and the Weyl 
equation 

7 v~, v = 0 (2.7) 

which is represented here by four-component Dirac spinors. The heuristic 
principle which leads to the nonlinear term can be outlined as follows: the 
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field equations for the description of the physical events are partitioned in two 
categories: 

1. There exists always an 'intrinsic' system 0', in which the field equations 
are as simple as possible, i.e. linear. 

2. This system is related to the 'physical' system (in which the field 
equations are, in general, not linear) by an affine connection, induced by 
certain transformation groups. Because all measurements must be per- 
formed in the system ~ (x), we call it in this paper observation space. 

Let us now restrict ourselves to local Lorentz transformations, varying from 
point to point. Since the Lorentz group contains the group of three- 
dimensional rotations, we can interpret this as a torsion of space. The state- 
vectors ~I, must be transformed by a continuous transformation, given by 

= S'~', LvUTu = S - I  7xS (2.8) 

(Lv u is the general Lorentz transformation). With help of (2.8) the Heisenberg 
equation becomes 

,[XSq~clk + (TXS,xS - t  -+ 12Tx'),(xlt"/~/y'-~))S~' = 0 (2.9) 

It was shown by Braunss that the expression 

7XS,x S - t  +_ 127xT(~TxTff" ) (2.10) 

must vanish to satisfy the conservation laws (invariance under the Pauli- 
Gfirsey transformation): 

(~TXTq), x = 0 

(conservation of the baryonic charge), and 

= o 

(conservation of the electric charge). From equations (2.9) and (2.10) follows 
the condition 

@S~Ix = 0 (2.11) 

Multiplying this result on the left by S -1, we obtain the Weyl equation 

3x x 
S-I , , /xS = ,,/uLx u = % ~x u'  

<'PI. = o 

This result is significant, as it explains the nonlinear term as a consequence of 
torsion as well as the relationship between the Heisenberg equation and the 
Weyl equation for neutrinos and antineutfinos. We shall make use of the 
covariant spinor formalism, containing torsion of space, for a generalisation of 
the Heisenberg equation. As we have already mentioned a connection 
between Feynman's parton theory and a smallest length l, we intend to con- 
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sider the Heisenberg equation from new aspects. Therefore it is necessary to 
give some background information about recent phenomenological theories in 
physics of elementary particles. 

3. Feynman's Relativistic Parton (or Quark) Theory 

In high energy physics much progress was achieved by means of group 
theory for the classification and characterisation of the observed particles. 
There have been many attempts to make phenomenological extensions of the 
usual relativistic (and even nonrelativistic) quantum theory for the description 
of the internal structure of the particles, which the local QFT describes as 
'points'. The harmonic oscillator plays a significant role in the approximation 
of the inner interaction forces. This kind of approximation is assumed in the 
parton and quark model and in the dual model. Feynman (1971) introduced 
for the internal structure of a particle the 'partons', but a successful inter- 
pretation by Bjorken (1969) identifies 'partons' with 'quarks'. The Heisenberg 
equation did not show a connection to these phenomenological theories, and 
we shall see this fact in this paper. 

Now we intend to describe the foundations of the relativistic parton theory 
developed by Feynman (1971) and coworkers. We emphasise that the appli- 
cation of the theory for the calculation of current matrix elements is not our 
problem here; we satisfy ourselves with a reference to the above publication 
(Feynman et aL, 1971), because our main interest lies in baryon dynamics. 
Feynman investigated three interacting partons (or quarks) under the con- 
dition that the kinetic energy E of a quark is very small compared to the rest 
energy: E 2 ~ mo~e 4. The operator of three interacting quarks is defined: 

3 3 
K = 3 ( ~  Pi z +(1 /108)~  2 ~. ( u i - u ] )  2 )+C '  (3.1) 

i=i i,j=l 

C' and f2 are constants chosen suitable for baryons, pi 2 is the square of the 
four-vector of the momentum operator of quark i: 

p ?  = p?,  - p L  - p?y - 

Piu can be replaced by - i h  ~/3uiu and uiu is the conjugate position. Feynman 
et al. (1971) assumed the propagator for b'aryons to be K -1. P = P1 + P2 + P3 
can be separated from the external motion. With these assumptions and the 
following substitutions 

P1 = ( 1 / 3 ) . P -  (1/3)~; P2 = (1/3) .P+  (1/6)~ - (1/2.3~/2)r/; 

P3 = (1/3) .P + (1/6)~ + (1/2.31/2)r/; ul =R - 2x; 

u2 =R +x - 31:2 .y; u a =R +x + 31/2y; 

equation (3.2) can be diagonaiised: 

K = p2 _ M 2 (3.2) 
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Feynman called M 2 the mass square operator: 

- M  2 = (1/2).(~2 +r/Z) + (1/2).I22(x 2 +yZ) + C' (3.3) 

The assumed propagator for the calculation of perturbances becomes: 

1 
K-1 = (p2 _ M2)-I = ~ hi p2 _ Mi 2 -hi (3.4) 

where (3.4) is written in terms of Gaussian eigenfunctions h (~, r/) of the har- 
monic oscillator and h means the adjoint to h. The matrix elements between 
small perturbances - 6 K  are given by 

Nij = ( h i l6K lhj) (3.5) 

Further calculations of current matrix elements are performed by creation and 
annihilation operators, for example: 

x = i(h/2g2)l/Z(b+ + bx) ] 

y = i(h/2a)l/a(b~ + by) I (3.6) 

[b u, b~,] = 6uu, (3.7) 

We should point out that Feynman et al. (t971) computed all matrix elements 
with an additional simplification, because only spacelike excited states were 
used and the time variable was neglected because the time-integration causes 
additional difficulties in the formalism. Therefore the parameters ~2 and C' 
have been chosen as they are suitable to facilitate the integration of equation 
(3.4), but this simplification corresponds to a static quark model, where these 
'fundamental' particles would have an infinite lifetime. We shall return to this 
model again from an axiomatic point of view. 

4. Physical Assumptions for a Generalisation o f  QFT 

In previous investigations (Ulmer) we have been able to show that a general- 
isation of the usual quantisation procedure [x, Px] = ih will lead to a quantised 
De Sitter space where the (constant) curvature and the spectrum of the space- 
time variables can only assume discrete values. The results of this mathematical 
model permit a nontrivial comparison with Feynman's theory. Therefore we 
intend to summarise the arguments and physical assumptions of the math- 
ematical model. The usual relativistic quantum theory describes a particle 
without any structure, and interactions between the particles are assumed to 
be 'point.interactions'. The local QFT and the classical theory of relativity 
require the satisfaction of the separation axioms in topology (Hausdorff space). 
We wish to analyse the validity of these axioms from the aspect of the measure- 
ment procedure in both theories. A spinor field ,I%, is quantised with a rela- 
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tion, satisfying local commutativity. For each e > 0 there exist spacelike dis- 
tances Ix - x '  j< e and the Fermion field must be quantised by 

• o~(X) @-~(x') + ~ ( x ' ) @ o ~ ( x )  = 8e,~8 (e) (4.1) 

8 (e) is the &distribution and x '  a continuous neighbourhood of each space- 
point x. The request of relativistic invariance is satisfied in the following sense: 
We assume two different measurement systems ~ and ~, which are classical 
systems, Hence we are able to state the position and relative velocity of one 
measurement apparatus in the reference system of the other apparatus by a 
Poincar6 transformation 

~c u = L~ v xv  + d u (#, v = 1 . . . .  4) (4.2) 

When the system 2~ measures the state-vector ~t,, the system ~ will measure ~, 
and a unitary transformation Umust exist, thus the scalar product in the 
Hilbert space will remain unchanged in the two frames: 

I ~ )  = U(LuV, du)  ]if-') ) 
(~1 '~ )  ( ~ [ ~ )  j (4.3) 

The relation (4. I) is the result of Pattli's conclusion that Fermions must be 
quantised in accordance with the Pauli principle, otherwise the energy of the 
quantised field would not remain positive definite. Pauli (194t) considered the 
general case of a situation, given first by the Dirac equation 

7 v'~, v = (moe /h)  x~ ] 

"t'v'Yx + 7xTv = 2 ~ ,  ) (4.4) 

g v a  = evfM, ;  e l  = e2 = e ;  = - e  4 = 1 

This equation for electrons is connected with serious difficulties, concerning 
the stability of those particles if the Pauli principle is neglected. According to 
relativity theory we may attach the mass m or energy mc 2 to an electromag- 
netic field by coupling the electron to its ,own field. An equilibrium between 
radiation and self-energy of the electron would never be possible, because it 
would lose its positive definite energy in a very short time (~ 10 -10 sec) by 
emitting dectromagnetic waves. The self-interaction leads to divergencies, 
although the equivalence between matter and radiation field would associate 
this term with a finite value mc 2. From this equivalence between matter and 
every kind of energy in relativity follows the conclusion that the Pauli prin- 
ciple is equivalent to the requirement of the stability of matter, and Dirac 
solved the above problem with the hole theory, in which the Pauli principle 
must be assumed. However, the lack of stability of matter is not only a prob- 
lem of QFT, where divergencies appear to be particularly important, but non- 
relative quantum theory and electrodynamics also lead to divergencies. Because 
of the constant number of particles the above problems do not cause profound 
difficulties. 

From the aspects of measurement processes relativity theory and non- 
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relativistic quantum theory have similar starting points, although quite different 
theories are obtained: 

1. In the theory of relativity we consider only macroscopic systems, for 
example, measurement apparatuses. For the definition of any rest system Z' 
we need a light beam in order to perform a time-synchronisation. We have to 
apply an interacting field to determine the space-time coordinates and the 
relative speed. Only then can we make use of the Lorentz transformation, 
mapping the space-time continuum onto itself 

x u' = L f x  v, det I L l [  = +1 ] 

' u' =x  2 _ c 2 t 2  ] (4.5) (xu)(x ) = xuxU + y2 + z 2 

With the help of the definition of a rest system ~ '  and relative speed we are 
able to define the energy-momentum relation 

PvP v = (P'v)(P'v) =~ E2 = P 2c2 + mo 2c4 (4.6) 

Here the rest system Z' refers to a macroscopic system and the interacting 
field must remain invariant under the transformation (4.5): For example, the 
electromagnetic field, described by the Maxwell equations. 

2. In quantum theory we also need an interacting field for the definition 
of the space coordinates of a particle. The time coordinate is assumed to be 
Galiteian where t = t '  always holds. A consideration of Heisenberg's uncertainty 
relation makes a fundamental difficulty apparent. The necessary field, 
described by the Maxwell equations, which remain invariant under the Lorentz 
transformation, has to obey the uncertainty postulate: 'Heisenberg's uncer- 
tainty relation for a material particle, for example, an electron, can be formu- 
lated only when the light beam (or any other interacting field) also satisfies 
the uncertainty principle. If there were no restriction on Ax and Ap for a 
light beam, we would be able to determine the position of the material particle 
to an infinite degree of accuracy by a well-localised beam without transferring 
an appreciable momentum uncertainty in an uncontrollable way.' (Sakurai, 
1967.) 

This connection between measurement processes in quantum theory, where 
the space coordinates of a material particle are not a given magnitude, and 
measurement process in relativity theory, where the time coordinate t (and in 
particular the 'eigen-time' of a particle) is not a given magnitude, shows the 
starting point of our physical assumptions. We must formulate a mathematical 
model, in which neither the space variables x, x '  nor the time variables t, t' 
play an exceptional role. The definition of a rest system N (x v') for micro- 
particles and the application of the Lorentz transformation between a rest 
system of such a particle and the measurement system must be restricted. It is 
an absolute requirement that experimental results, obtained in different 
observation systems, must be relativistic invariant with respect to the macro- 
scopic systems. 

Because the light beam has to obey the uncertainty principle, the trans- 
formation group (4.5) and (4.6) can only contain statistical information in the 
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area of subatomic structures and the problem of time-synchronisation between 
microscopic particles and the reference frame of a measurement apparatus 
induces further physical and mathematical consequences. We mention once 
again the Pauli principle. The connection between measurement process in 
quantum theory and time-synchronisation in relativity theory permits, in the 
author's opinion, a qualitative understanding of the Pauli principle. In both 
cases we need a light beam (or any other interacting field), on which we must 
put the requirement that the field must already obey the uncertainty principle. 
For this reason there is no possibility for a time-synchronisation of micro- 
particles to determine the 'eigen-time' t~, t ~ . . .  and the time t~, t2 . . . .  regis- 
tered by the measurement frame, and information about ff'(tl ), t] and '~(t2), 

! 

t 2 cannot be obtained in one measurement. This agrees with the exclusion 
principle, which states that no more than one particle can occupy a state- 
vector q~ at any one time. (See previous investigations (Ulmer).) 

The use of a rest mass (or rest energy) mo is only justified in the rest system 
~'(xV'), in which the determination can be performed only in classical systems. 
When one considers the interaction procedure for the time-synchronisation for 
a microparticle, the unrestricted application of equation (4.6) must be regarded 
as problematic, if the uncertainty principle is included from the beginning. In 
a nonrelativistic approach the problem of a rest mass does not exist, as the 
observed mass does not depend on the relative velocity. 

These problems concerning the rest frames of microparticles and the 
observation frames, are also of interest in the heuristic principle for the inter- 
pretation of the nonlinear term of the Heisenberg equation by Braunss, where 
the partition in 'intrinsic' system and observation system led to the nonlinear 
term, describing specific kinds of interactions. This partition can be classified 
in two categories ,  as there must be mappings between the different systems, 

e.g. 

f " x --~ X t 

With respect to conservation laws in physics those mappings are of interest 
where certain mathematical structures are preserved, tn relativity theory and in 
local QFT it is assumed that all spaces satisfy the separation axioms (Hausdorff 
space). The relation (4.1) refers to a continuous neighbourhood, and this con- 
dition Ix - x ' j <  e is also satisfied by the Lorentz group x a x  = x a x  , where 
x ~(') are four-vectors and each of them may assume continuous values. In 
relativity it is also assumed that the rest frame ~ ( x )  and any measurement 
frame can coincide at a special t = t' = 0 and x = x ' =  0. However, we have 
observed that the definition of a rest system ~ ' (x  v') of any microparticle and 
the time-synchronisation cause profound difficulties, if the uncertainty prin- 
ciple is taken into account from the beginning. Because the fundamental trans- 
formation group of the theory of relativity should be maintained, but not in an 
unrestricted way and for a continuous set o f x  v and x v', the transformation 
(4.5) and (4.6) must assume the character of an operator equation. We have 
already stated that the change of one reference system ~ ( x  v) to any other 
system ~ (2 v) requires the information about the distance between the two 
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systems and the relative velocity: only then are we able to formulate a one-to- 
one-valued mapping between the two systems 

f~: ~ (x ~) -+ ~ (~)  
f- ix:  ~(~)  + z(x ~) 

If we consider mappings between classical systems, then all informations for 
the determination of the different systems are known and the distances 
between the systems ~(x x) and ~(~x) represent a given magnitude. As the 
metric of a space is given by the definition of the distance between the elements 
of a set, the metric is also determined. If we consider a classical measurement 
system Z (x x) and a rest system £ ' ( x  x') of a microparticle or the rest systems 
between any two microparticles as reference frames, where the precise deter- 
ruination of all informations for the mappings f and f-1 is impossible due to 
the uncertainty principle, the metric of space-time represents an eigenvalue 
problem of an operator equation, and x v and x v' cannot assume, in general, 
continuous values, for the distances (or the metric) of space-time is not a given 
magnitude. In this case, the separation axiom is not satisfied, and we can see 
this immediately, as we can interpret all metrical spaces as topological spaces, 
if we define the distances by the means of the neighbourhoods and the separ- 
ation axiom is always satisfied in the case of a metrical space. 

The set of all real numbers (or the fidd of real numbers) shall be noted 
with R. Now let the four-dimensional manifold 

v(R) 

be a vector space on the field of real numbers R, which belongs to the measure- 
ment system Z(xV). As we can define on the same field R any other vector 
space 

tT(~) 

belonging to ~(xP), which is called isomorph to V (or the both reference 
systems Z and Z are equivalent), if the following mappings between the vector 
spaces on R exist: 

f" V(R) -> P(R) 1 
(4.7) 

J 2-1: ~(~)-, v(~) 
In special theory of relativity the above mappings are specialised to linear 
transformations: 

x ~' = Lx~'.~ x, x v E V(R) } (4.8) 

.~x = / .Xx .  ' ~x ~ P(R) 

The scalar product of the vector space V(R) is a mapping 

g: V ( ~ )  --> IR (4.9) 
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In the case of special relativity (4,8) we obtain 

ffavXVXia =X 2 +y2  +Z2 _ C2t 2 =$2 / 
(4.10) J S 2 E  R 

ffuv is defined as in equation (4.4) by 

ffuv=eufuv, ea =e2 =ez = - e 4  = 1 (4.11) 

and assumes diagonal form. If we abandon the group of linear transformations 
of vector spaces with four-dimensional manifold, we cannot state a mapping 
~: V ~ R which can always be diagonalised, and we shall use the notation g 
instead of if, e.g. the scalar product in the Riemannian geometry" 

dSZ = guy dxV dxU (4.12) 

if an arbitrary transformation x u '  = x u P(x ~') is considered, The metric, induced 
by (4.9) and (4.10), is called pseudo-Euclidean, because the Euclidean space 
R 4 requires a mapping into R +: 

x 12 + x2 2 + x3 2 + x4 2 > 0 and R+ = (x/O < x < oo)t (4.13) 

tn special (and in general) theory of relativity we have to consider continuous 
mappings of isomorph vector spaces V with four-dimensional manifold on the 
field of real numbers into the same field R, as stated in equation (4.7): 
g: V(•)  ~ R .  

The field of real numbers R plays a very important role in the mathematical 
theories of metrical spaces, because it forms a complete linear space (Banach 
space), satisfying the separation axiom (Hausdorff space). We shall observe 
now that in those cases, where several reference frames cannot be fixed by one 
measurement, e.g. any observation system E and a rest frame ~' ,  the separ- 
ation axiom is not satisfied and the metric, induced by the mappings of the 
vector spaces V(R), V'(R) into R, is not a given magnitude. Therefore we 
consider any two points x and x', where x'  E R and x E R. The set of all 
possible x '  shall be given by mappings of R onto itself. 

The separation axiom requires that for any two points x, x '  E Rthere exist 
neighbourhoods N(x) C R and N'(x ')  C R, satisfying the condition 

N'(x') n N(x) = q~ (4.14) 

If  these neighbourhoods exist, satisfying the defining axiom of a Hausdorff 
space, we can conclude further: the coincidence of different reference systems 
Y~ and Z '  at x = x '  = t = t '  = 0 is now possible, as the fixation of any point x or 
t and of  points in any neighbourhood of this point x or t requires the satis- 
faction of (4.14). The topology of R is separated and forms a complete linear 
space, as each Cauchy sequence is convergent against an element of  R : for 
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each xn and Xm E R, there exists e > 0 so that Ixn - Xml < e for n(e) > no, 
re(e) > m o ,  where follows lira Xn -~x E R for all sequences {xl . . . . .  Xn} C 

The topology of R is used for the definition of the completeness of normed 
vector space, e.g. the Hilbert space H. In QFT the validity of the separation 
axiom is also assumed, because the axioms (4.1)-(4.3) form the basis of local 
QFT. 

There is considered a separated Hilbert space H, formed by the set of state 
vecto~ (~a • • • ~j  • • -}, where 'I~ 1- E HI and each HI is separated. The direct 
sum @ H i also forms the separated Hilbert space//. The metric is induced by 

j=0 
the mapping 

g: H ( R )  ~ R+ 

o r ;  

]=0 

The topology of R+ is separated, as ~÷ C R, deffmed in (4.13). 
The anticommutator rule (4. I) requires local commutativity, as the 6- 

distribution vanishes for e 4: 0: [~+(x~), ~(x)]+ = ~ (e), where e > 0 and for 
all spacelike distances Ix - x~]< e must be satisfied. Streater & Wightman 
(1964) emphasised in their investigations on the axioms of local QFT that the 
request of local commutativity is perhaps too strong an assumption. I f  it is not 
satisfied, then every commutator does not vanish for all distances of  space-time 
points, not only where x = x' :  

['I'+(x'), q'(x)] *0, I x - x ' t > 0  (4.15) 

Recently some authors (see Kirzhnits (1971)) investigated commutator rules 
of the form 

@ ( x ) x ' -  x ' ~ ( x )  • 0 (4.16) 

to prevent local commutativity. In view of our investigations on the Pauli 
principle the introduction of commutator rules of the form 

~I'( t) t ' -  t'ffz(t) * 0 (4.17) 

or more general: 

• ( x~)x  " '  - x" ' , i , ( x  ~) # 0 

would be of interest, since such relations prohibit information about elemen- 
tary events at the same time. They also express the impossibility of a time- 
synchronisation. From an algebraic and axiomatic point of view the relation 
(4.17) or (4.16) is unsatisfactory, as the algebraic foundation is unclear. The 
relations (4.16) and (4.17) can be specified in more detail as 

[q~(xV), ~ ( x  u ')] + = 8 ,x~ Kc~ (x v, x u ') (4.18) 
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~ ' ( x  'u) means the rest frame or 'intrinsic' system, ~ ( x  v) any observation 
system. In equations (4.16)-(4. t 8) x 'u and x v represent operators, which 
cannot commute with each other. For giving an algebraic foundation, we 
have discussed in previous investigations (Ulmer) the commutator 
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xVTux  u ' (x  v) - % x  u ' ( x v ) x  v = "FI 2 (4.19) 

x v and x 'u are real and represent operators, where the separation axiom is not 
satisfied, in general, because a fixation of any space-time point x v of the vector 
space V(R) does not permit a precise determination of the distances to all 
points x 'u of V'(R), which may form neighbourhoods of the space-time point 
x v. However, if a microsystem is measured by different classical systems ~ and 
2, where the relative velocities and positions between the two frames must 
always be given, as they are classical systems, the above mathematical relation 
(4.19) must be relativistic invariant in the same sense, mentioned already in 
our discussions about relativistic invariance of local QFT. Relativistic invari- 
ance is obtained when the introduced symbols 7u and 7 v agree with Dirac 
matrices (metrical bispin tensors). By means of the commutator (4.19) we can 
form operator-valued functionals and investigate K c ~ ( x  v, x u') ,  related to the 
commutator (4.18). In the context of (4.18) and (4.19) we may mention that 
Heisenberg (1967) introduced the noncanonical quantisation procedure 

+ t 
['I~(x), qts(x )1+ = p(x, x')6~t38 (x - x ')  (4.20) 

to avoid divergencies, as the spinor equation (2.1) cannot be renormalised. In 
this procedure p(x ,  x ' )  must vanish for x = x' ,  because then the &distribution 
becomes infinite. It is interesting to note that the condition Ke~ = 
p(x ,  x ' ) 6 ~ 6  (x - x ' )  classifies a special set of q~-functionals, where (4.18) is 
satisfied. 

The algebraic relation (4.19) can be transformed into a field equation by 
means of a relation for differential operators: from A B  - BA  = c follows that 
the transformation A ~ a/OB yields 

Ifg(B) is an arbitrary function, commuting with B, the above relation is also 
satisfied with 

a 
A -+ - ~  + g(B) ,  [B, g(B)] -= 0 (4.21b) 

Applying (4.21 a, b) to relation (4.19) we obtain the field equation 

'Yu" ( xu ' ( xv ,pu ) )  e) = - 1 2 7  v [(a, v +- Pv~], [Pv(xX), x a ] -- 0 (4.22) 

Pv is an arbitrary function, which must be chosen so that (4.22) satisfies 
covariant derivation in the spinor formalism (affine connection in the spinor 
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formalism). In the most general case x 'u represents the mapping f u :  x ~ ~ x u '  
and depends also on the relative velocity (or momentum) to the system ~(xV): 

xU' = xU'( xv, Pv) (4.23a) 

The affine connection Fv in the spinor formalism has been considered very 
thoroughly by Schmutzer (1964) and other authors (Rodichev, 1961 and 
Braunss, 1964, 1965). It can be split up in two parts 

i~ _ p R i e m a n n  + p C a r t a n  
/1 m ~/1  

if space-time has Riemannian geometry (curvature) and torsion (Cartan space), 
introduced in Section 2, equations (2.2), (2.3) and (2.6). A restriction of 
(4.23a) to the inhomogeneous Lorentz group 

x u '  = a u + LuUx v (4.23b) 

where Lv  u depends on three relative speeds v i (Lv u = LvU(vi)), yields 
Fv - F Caftan, as F ~  ernann and {v% ) vanish for (4.23b), inducing a space with 
constant curvature. Now we obtain the following equation 

t # 7u(  a + LvUxV)~ = - 1 2 7  v [~. ,v + --vl"Cartan~]'zJ (4.24) 

The introduced constant l has the dimension of a length, known from the 
Heisenberg equation (2.1). For the following we wish to consider Feynman's 
theory again and neglect Pv, too, containing torsion of space and making 
equation (4.24) nonlinear. Thus we get 

vu(a u + LvUxV)c~ = -lZ3,v(~,v (4.25) 

Equation (4.25) shows relativistic form invariance with respect to different 
measurement frames Z and ~. The two systems are determined by the Lorentz 
transformation x v = A ; ~  x, as they are classical systems. When ~ registers ~, 
then ~ will register ~, and there must exist a unitary transformation U 
between q~ and ~b of the form ~ ( A x )  = U ( A ) ~ ( x ) .  Because of  LuUx v + a u = 
a u L v A x ~ c  weobtainx =a  M x x  and: 

ru(Mx"x x + a")~ = - I : U ( A ) z ' v u - I ( A ) A v X ~ ( ~ x ) , x  (4.26) 

where we have usedMx u = LvUAx v and O/bx v = A v  x . O/a~c x. Equation (4.26) 
has the same form as equation (4.25), if the following conditions are satisfied: 

U(A)7 , ,U-~(A)Avx  = ,,ix =~ A~,X,y~, = U-~(A) ,yxU(A)  (4.27) 

The satisfaction of (4.27) is already required by the Dirac equation (4.4), as 
stated in equation (4.3), and it is evident that U exists. 

To learn more about equation (4.25) we perform a further iteration on 
both sides of equation (4.25). This must lead to a quadratic form: 

~t  ~ r ,  ~ v v a 
x ~ /~r .x  9 = ( - z 2 )  z a - Z  ~r z a T  
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Using well-known relations for L~U: 

(L-1)xULv a = 8vu, 7v = ffvuTu, Luv  = f f . xLv  x 

7vTu - 7u7  v = [7 v, %]  

we obtain: 
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r/.t 

" = - l  v "y 

By the use of the above defined relation [7 v, %] and the restriction to the 
• ¢,1~ 

linear transformation x = a u + LvUx v respectively 3x'U /ax v = L f we obtain: 

r# 
lug" ,,u,,,lux'Ua,+.,,,e l u ~ u  ~" Lv"x'#~v'~ w -  12[,}y, ,},/a ] X ~,v 

_ 12 [,),v, ,),u]Lvg(a - i4 (o ,v , v  ~ 14c2(9 

This expression can be transformed by the means of the algebraic commutator 
relation(4.19): 

(4.28a) 

t~ ,lu%(a** .a u + x u .xU)fa _ l 2 [,),v, T,s]x q~,v 

_ l 2 [T v, Tu]L~q~ = 14[]q~ 

In order to make equation (4.28a) more convenient and to regard again 
Feynman's theory we have requested vanishing of the terms 

7uTu aULfxVq 5 =- 0 ( V x  v and Lv u) 

This restriction will lead to the condition (4.30). As it is our aim to compare 
equation (4.28a) with Feynman's theory, stated in Section 3 of this paper, and 
to formulate a quantised de Sitter space, we request vanishing of the terms 

- 12 [T v, 7 .1Lfq5 - t 2 [T v, 3 'u]x"  ~b,v 

guu(xUx u + aUaU)~ = 14[~  ] 

(X 2 + y 2  + Z2 _ C 2 t  2 _ a 2 ) ~  = 14[S]~b J (4.2ab) 

and obtain: 

The 3,V-matrices must satisfy the definition (4.4); 

%7~. + 3'x%, = 2~ux 

However, this is only ,possible as long as we consider linear mappings 
f: V(R) -+ V'(N) or x "  = L f x  v + aU, because only then exists g: V ( R )  -~ N ,  
where g is diagonalised: 

grid = ~b~  
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In the case of an arbitrary transformation x '~ = x'U(x v) the above anticom- 
mutator becomes 

7d',/.+Tu%,=2guv S = f d S =  5 [g~zvdxt*dxV] 1/2, S ~ I R  (4.29) 

This relation has already been discussed by some authors (see Rodichev (1961), 
Braunss (1964, 1965), Schmutzer (1964) and Datta (1971) in connection 
with the Dirac equation in the Riemannian space. Because of the difficulties to 
obtain solutions we restrict ourselves to quadratic forms. The inhomogeneous 
term a" requires the condition 

- ( a )  2 =aga  ~ = - ( a 4 )  2 +(a3)  2 +(a2)  2 + (a l )  2 % % a  ~ = 0 )  

a~7~q,~z = 0 ~ a 4 = +(a 1 + a 2 + a3)Vx u, L f  (4.30) 

A diagonalisation of equation (4.28b), which represents a quadratic form, leads 
to the condition that a 4 is not independent from the remaining a i, and the 
condition (4.30) is not required in the case of  Riemannian geometry, assuming 
the relation (4.29) as defining axiom for the metric. Equation (4.28) represents 
a quantised de Sitter space, where the constant curvature, induced by the term 
(a) 2, can only assume discrete values. This equation was discussed and solved 
exactly in a previous publication (Ulmer), using harmonic oscillators. The 
result was a nontfival connection with Feynman's theory, described above. 
Since in relativistic theories the total mass or energy appears only in the fourth 
component of  a four-vector, which we have to connect with a 4, the remaining 
a i (i = 1, 3) must also be related to any kind of mass and lead to particular 
conditions by the diagonalisation. Therefore they may be considered as 
'quasi-particles' and become interesting in the parton (or quark) model. 

In recent theories in high energy physics, harmonic oscillators or linear 
internal forces play an important role. An axiomatic access to those theories 
we have obtained under the assumptions: the use of a rest mass (or energy) is 
only justified in the rest system ~'(x'U), related to that the self-interaction of 
an elementary particle can be defined. The uncertainty relation permits the 
exact knowledge of either the measurement frame 2; (x u) or the relative velocity 
vt, but not both things by one measurement, required for a strict application of 
the Lorentz transformation. Therefore we have considered this transformation 
as a term of an operator equation, representing the self-interaction with respect 
to the rest frame. The linear mapping f: x -+ x '  represents an approximation, 
where (v~ } = 0. Neglecting certain terms we are able to compare the model of  
a quantised de Sitter space with Feynman's theory. Considering a i as 'quasi- 
particles' we emphasise that the satisfaction of SUa-symmetry with a 1 = a2 = a s 
is an additional assumption of a high symmetry, which may not absolutely be 
justified. We wish to state here some juxtapositions to Feynman's patton (or 
quark) theory 

- M  2 ~ aua ~ (equation (3.3)) 
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equation (4.28) corresponds to equation (3.2): 

K 2 = p2 _ M e 

( X . X "  --  (~)2)q~ = [4[:]~ b 

equation (4.28) was solved (Utmer) by creation and annihilation operators 

x u = l .  2 -1/2 . [b u + bU+], [b ~, b y+] = 6 uv 

A comparison with equation(3.7) shows 

t = ( h / a )  1/2 (4.31) 

From (4.31) we can verify: setting in the value for ~ ,  we would obtain 
1 ~ 1 0  -14 cm. But we must refer to our remarks in Section 3. Feynman used 
~2 suitable to neglect time-excited states in equation (3.2), which cause many 
difficulties and this approximation yields a static quark model of baryon 
quarks, which would have an infinite lifetime. It is easy to verify that this sim- 
plification does not suit a relativistic formalism. The general solution of 
equation (4.28b) requires besides the spin four quantum numbers for (a) 2 
(see (Ulmer)) and each variable x v of space-time produces one quantum num- 
ber. Considering the very short lifetime of some hadrons and the hadron 
resonances (< 1 0  - 2 3  sec), it is quite certain that l must be much smaller and 
we are, at present, unable to specify the upper limit for l more exactly. There- 
fore there is some reason to assume that I may be of the order of the funda- 
mental gravitation interaction length (equation (1.2)). 

5. Further  Resul ts  and an Appl icat ion to Heisenberg's 
Nonlinear Spinor  Equat ion 

The neglect of torsion (Cartan space) or the affine connection in the spinor 
formalism (Pv = 0) is justified because we can find an exact solution for 
equation (4.25). A set of permissible C-functions for equation (4.25) is obtained 
by 

( 1 v ~ v v ikvxVl ] ¢ = A  exp ~-  ~--~-7 e v % L ~  x x - J" (5.1) 

+ t ~" Complex'conjugation I 

In the case of the ground-state A is a constant amplitude of a four-component 
spinor, and there results the following identities: 

% L f x  v = 3 , V T V e v % L f x  v 

e l  = 6"2 = e3 = - - e 4  = 1 

7~a u = i127Vk v 

The wave-vector kv can be replaced by pv/h, where Pv is the relativistic four- 
momentum. The solution (5.1) consists of a product of two parts: 1. The 
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Gaussian wave-functions, which descend rapidly at greater distances of space- 
time. 2. The plane-wave solution, which agrees with the Dirac equation (4.4) 
for free particles. For larger distances we obtain quite natural the free particle 
solution. For the physical interpretation it is interesting to compare the above 
solution (5.1) of equation (4.25) with the Schrbdinger equation for a free 
particle (in one space-coordinate) 

hZ a2~= ih 3___ qJ (5.2) 
2m bx 2 Ot 

The general solution of this nonrelativistic equation may be written in plane- 
waves: 

• (x, t) = ~ Uk exp{i(kx - (E/h)t)} + Complex conjugation (5.3) 
k 

It is also possible to represent the free particle solution (5.3) in the form of a 
Gaussian wave-packet and to formulate the uncertainty relation by means of 

( x ) =  f [~[2xdx 

= (x  - <x  >): I 12 dx 

Now we obtain 

~(x, t)= [(Ax)2/2fr3]l/4 f exp(--kZ(Ax) 2 tT~k2t } -- + ikx dk 
2m 

= (2zr)-1/4 (Ax + iht~V2exp(, x 2 
2mAx] 4(Ax) z + (2tT~t/m)) (5.4) 

which represents a wave-packet of which the centre remains at x = 0 while the 
breadth of the packet increases as t departs from zero in both past and future 
directions. Using the formulation of equation (5.2) by Feynman integrals of 
the kind ~(x, t) = f Go(x, x t, t, to) ~(x', to)dx', the corresponding Greens- 
function Go(x, x', t o, t) is represented by Gaussian eigenfunctions: 

[ -ira ],/z I im(x = x ' ) 2 /  (5.5) 
Go = "2~-~-  to)J exp~ 2 h f t -  to) J 

The most significant difference between the solution (5.1) of equation (4.25) 
and the free particle solution (5.4) of the Schr6dinger equation resp. the free 
particle propagator Go(x, t, x', to) of it can be characterised by the behaviour 
of the time coordinate t in the Gaussian functions. In the case of nonrelativistic 
quantum theory, where point charges, described by a probability behaviour in 
the space.time-continuum, are considered, the uncertainty relation requires an 
increasing breadth of the wave packet, when the time increases. A narrow wave 
packet is related to a precise measurement of the space coordinate x. As there 
exists no difficulty, arising from the consideration of the rest frame £'(x'U) in 
relativity theory, to satisfy the separation axiom, if the space distance (Ax) is 
fixed very precisely, it is obvious that the momentum uncertainty requires an 
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increasing breadth of the packet. In our relativistic considerations, where we 
have avoided a special treatment of the time coordinate t = x4/c, we have used 
the uncertainty principle for the fixation of the uncertainty of any neighbour- 
hood (x ' ) ,  in which the rest frame of a microparticle is defined, when any 
space-time distance has been measured by an observation system ~ (x v) with 
the precision ( A x )  and (At). Any space-time point can be fLxed without any 
uncertainty of the neighbourhoods of that point, and the separation axiom is 
not satisfied, in general. An elementary particle can no longer be described as 
a point, if the distances of space-time for the observation of the particle in 

(x v) are finite. This fact is expressed in the solution (5.1) of equation (4.25) 
by the very rapid descension of the Gaussian functions, when the time coordi- 
nate t is starting with zero and increases in both directions. 

The algebraic relation (4.19) can also be used for an algebraic relation of 
the Dirac equation (4.4). For this purpose it is necessary to assume that the 
rest frame E '  (x'U) does not depend on the system E (xV). Instead of the map- 
ping f: x -~ x '  with x'U = L f x  v + a g we represent x'U by a constant four-vector 
and regard the Poincar~ group (4.23b) as a linear approximation ofx'U = 
x'U(xV), which shall be neglected: 

x 'u =a u + O ( L f x  v + . . .  +) (5.6) 

A constant four-vector can always be chosen so that the amount of  only one 
component does not vanish and the remaining components are made zero: 

x 'u = 0u(~ = 4, a 1 = a 2 = a 3 = 0 )  (5.7) 

put is the momentum in the rest frame Z,'(x 'u). Substituting (5.7) by the rest 
mass and rest momentum pU' we have to make use of  the constant h to obtain 
the suitable dimension of a length 

x u '= 12p u'/(h) ) 
(5.8) J p41= moc ' p l l = p 2 1 = p 3 1  = 0  

With help of this expression for x 'u the commutator (4.19)becomes 

xV 7u pU' _ 7u pU %v = h3,V (5.9) 

As the coordinates of  the rest frame do not depend on any reference system in 
a neighbourhood of G'(x~U), the separation axiom is always satisfied for the 
algebraic relation (5.9), and as a consequence of this fact, the structure of  
space-time is a continuous one. Applying the transformation (4.21 a) to the 
relation (5.9), the four-component spinor equation (4.4), known as the Dirac 
equation, 

7uPUrX# = - h T V ~ ' v  =~ + m°ch ~# = 7vlP'v I 

is obtained, which plays a fundamental role in relativistic quantum theory. 
This result makes it evident that the algebraic relation (4.i9) provides an 
interesting tool with great flexibility, as the Dirac equation is obtained, if the 
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mapping f" x v -~ x'U = constant  is considered. In the last time many authors 
considered the covariant Dirac equation in the Riemannian geometry. That 
means, between the different observation systems Z and ~ there exist map- 
pings, inducing Riemannian geometry or: the systems ~. and ~ are accelerated 
against each other. However, F Riemann has no consequence for the rest mass 
too, as the system 2;'(x'V) does not depend on any observation system. We are 
able to obtain the covariant Dirac equation by applying the transformation 
(4.21b) to equation (5.9), where P v is specialised to P v = --vPRiemann" 

m oC • FRiemann =rv[q~,~ +_ ,I,] (5. i0) 

The covariant Dirac equation (5.10) has been discussed by many authors; for a 
detailed treatment of (5.10) and the covariant derivation of four-component 
spinors in the Riemannian space the publication of Schmutzer (1964) may be 
consulted, in which the symbol F Riemann and its connection with {~} is 
investigated, as our main interest lies in the discussion of a generalisation of 
the Dirac equation (4.4) by means of the torsion (Cartan space). For this pur- 
pose we make use of the transformation (4.21b) and specialise Fv to Fv = 
pC artan 1-,Cartan represents the most general case of the group of local trans- 

/2  " ~ V  

formations between the system Z'(x 'U)  and the observation space N(xV), in 
which all measurements must be performed, as it is impossible to measure in 
the rest frame ~,'(x'U) of an elementary particle. The generalised form of the 
Dirac equation now becomes: 

= = FCartan~tt l  [pCar t an (x~ ' ) ,  x x] -~ 0 moc  ~ 7v 7 v [ ~ , v  +- v J, 

h (5.11) 

The group of local transformations in equation (5.11), represented by the 
symbol; pCartan, is based on the vector space V(R) with pseudo-Euclidean 
metric. The set of all Lorentz transformations, varying from point to point in 
the Minkowski space, can therefore be understood as a torsion of the Minkowski 
space. A twisting (or torsion) of space-time (in this restriction a Minkowski 
space) leads to the concept of spin, represented by a four-component spinor 
space (Cartain space). In Section 2, we have already given a reference to some 
publications which appeared some years ago, concerning the torsion of st?ace- 

. . . .  alism I ~tcartan time (Cartan space) and the affine connectmn m the spmor form v , 
of which we have made use for obtaining the covariant derivation with respect 
to the spinor space. It was our motiviation for giving these reports in Section 2 
that the nonlinear term of the Heisenberg equation can be derived by torsion 
of space-time, which is equivalent to a Lorentz group, varying from point to 
point and describing a universal spin-spin-contact interaction. In the publi- 
cation of' Braunss (1964, 1965) the relation of the nonlinear Heisenberg 
equation to the Weyl equation for neutrinos and antineutrinos has been made 
more distinct: 

/ )  _ 

7 q~,v-0 



HEISENBERG'S NONLINEAR SPINOR EQUATION 71 

We obtain the Weyl equation by setting 

x 'u - O, Pv =- 0 

The physical contents of this condition is that the rest mass mo will vanish in 
a system, where the relative speed is zero. This equation has become actual, as 
the neutrinos and antineutrinos do not show parity invariance, and this 
behaviour plays an important role in the Heisenberg equation, discussed in 
Section 2. According to Braunss the Weyl equation refers to the 'intrinsic' 
system £ ' (x 'U)  and the nonlinear term of equation (2.1) is induced by torsion. 
That means, the term --vpCartan is responsible for the Heisenberg term, as shown 
in Section 2. 

The partition in an 'intrinsic' system or rest system and a measurement 
frame (or observation space), in which all physical measurements must be per- 
formed, as we are unable to observe in the rest frame ~ ' ( x  'u) of a micro- 
particle, is also the starting point of our physical assumptions. We obtain fur- 
ther aspects like Feynman's relativistic patton theory, if we formulate the 
connection between the rest system and observation space from an axiomatic 
point of view, where the problem of time-synchronisation for elementary par- 
ticles becomes the starting point for a generalisation of the quantisation pro- 
cedure (4.1). The Heisenberg equation does not show any connection to the 
parton (or quark) model. If we had neglected the inhomogeneous Lorentz 
group as a part of the operator equation (4.25) and taken account of the term 
pCartan only, as in equation (5.11), we would have obtained the Heisenberg 
equation and therefore no relation to the parton model, as it is necessary to 
introduce the Poincar6 group between measurement and rest frame as a term of 
an operator equation. By that an elementary particle is no longer described as 
a 'point'. However, the neglect of the term Pv is only justified by mathematical 
simplification and the exact solution (5.1). 

/ ~Riemann I f  the point of view is justified that Riemannian geometry [or t v  = 0) 
is not essential in the theory of elementary particles, and a space-time structure 
with constant  but  discrete curvature and torsion (pCartan 4: 0) is sufficient, 
then we are able to consider the Heisenberg term and the parton model as 
different aspects in the theory of elementary particles. It is to be hoped that 
a combination of a quantised de Sitter space, leading to a generalisation of the 
parton model and the torsion of space will lead to a suitable generalisation of 
the Heisenberg equation. By the stipulation that the affine connection repre- 
sents only torsion, where {v% } - 0 ,  we obtain from equations (4.24) and (2.6b): 

Cartan "r~,(LvUx ~ + aU)~  = - 12"r ~ D ,  ~ ± r~  e~] 
(5.12) vpCar tan  

This field equation, representing a combination of torsion of space and the 
parton model, is more difficult and complicated than equations (2. t)  and 
(4.25). The author could not find nontriviat solutions. However, the nonlinear 
term of equation (5.12) may play the rote of a perturbation. But it is significant 
for the calculation of transition probabilities. As it is necessary to find sol- 
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utions and concrete results, we wish to return again to Feynman's parton 
theory. For the interaction of three partons (or quarks) Feynman introduced 
the operator K (equation (3.2) in Section 3) and assumed the propagator to be 
K -I.  Perturbations - S K  of this operator will then lead to a propagator 

~ - 1  = (K - ~ g )  -1 

For the calculation o f  matrix elements Feynman used the relation 

~-~ =K-1 + K-18K. K-1 +K-15K. K-I~K.  K-1 + . . .  + 

By that Feynman and co-workers could consider small interactions, for 
example, spin-spin interactions! (This kind of interaction is described by the 
non-linear term of (2.1) a priori.) 

In the opinion of the author it is necessary to investigate such approximation 
methods, and the solution (5.1) should be a suitable type of function for 
propagator methods. He hopes further that this paper may contribute to new 
formulations of questions in high energy physics. The starting point of this 
paper for deriving the parton model is the problem of the time-synchronisation 
for microparticles and the uncertainty principle. This unexpected connection 
between parton model and measurement process of a relativistic problem may 
also contribute to detailed discussions in the theory of measurement processes. 
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